BibliographyΒΆ
[Ref01] | P. Y. Lagree. An Inverse Technique to Deduce the Elasticity of a Large Artery, European Physical Journal Applied Physics, 9(2), pp. 153-163, 2000, https://doi.org/10.1051/epjap:2000213. |
[Ref02] | W. Nichols, M. O'Rourke and C. Vlachopoulos. McDonald's Blood Flow in Arteries, Sixth Edition: Theoretical, Experimental and Clinical Principles, 6 edition, **, CRC Press, 2011. |
[Ref03] | L. Formaggia, D. Lamponi and A. Quarteroni. One-Dimensional Models for Blood Flow in Arteries, Journal of Engineering Mathematics, 47(3), pp. 251-276, doi: 10.1023/B:ENGI.0000007980.01347.29, 2003, https://doi.org/10.1023/B:ENGI.0000007980.01347.29. |
[Ref04] | A. S. Olufsen. Modeling the Arterial System With Reference to an Anesthesia Simulator, Ph.D. Thesis, Roskilde Universitet, 1998. |
[Ref05] | N. Stergiopulos, D. Young and T. Rogge. Computer Simulation of Arterial Flow With Applications to Arterial and Aortic Stenoses, Journal of Biomechanics, 25(12), pp. 1477-1488, doi: https://doi.org/10.1016/0021-9290(92)90060-E, 1992, http://www.sciencedirect.com/science/article/pii/002192909290060E. |
[Ref06] | J. Alastruey, K. Parker and S. Sherwin. Arterial Pulse Wave Haemodynamics, in BHR Group - 11th International Conferences on Pressure Surges, pp. pp. 401-442, 2012. |
[Ref07] | S. Sherwin, V. Franke, J. Peiro and K. Parker. One-Dimensional Modelling of a Vascular Network in Space-Time Variables, Journal of Engineering Mathematics, 47(3), pp. 217-250, doi: 10.1023/B:ENGI.0000007979.32871.e2, 2003, https://doi.org/10.1023/B:ENGI.0000007979.32871.e2. |
[Ref08] | P. Nithiarasu. Biofluid Dynamics, in Swansea University notes, pp. pp. 401-442, 2012. |
[Ref09] | E. Boileau, P. Nithiarasu, P. J. Blanco, L. O. Muller, F. E. Fossan, L. R. Hellevik, W. P. Donders, W. Huberts, M. Willemet and J. Alastruey. A Benchmark Study of Numerical Schemes for One-Dimensional Arterial Blood Flow Modelling, International Journal for Numerical Methods in Biomedical Engineering, 31(10), pp. n/a-n/a, doi: 10.1002/cnm.2732, 2015, http://dx.doi.org/10.1002/cnm.2732. |
[Ref10] | X. Wang, J.-M. Fullana and P.-Y. Lagree. Verification and Comparison of Four Numerical Schemes for a 1D Viscoelastic Blood Flow Model, Computer Methods in Biomechanics and Biomedical Engineering, 18(15), pp. 1704-1725, doi: 10.1080/10255842.2014.948428, 2015, PMID: 25145651. |
[Ref11] | O. San and A. E. Staples. An Improved Model for Reduced-Order Physiological Fluid Flows, Journal of Mechanics in Medicine and Biology, 12(03), pp. 1250052, doi: 10.1142/S0219519411004666, 2012. |
[Ref12] | M. S. Olufsen, C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim and J. Larsen. Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions, Annals of Biomedical Engineering, 28(11), pp. 1281-1299, doi: 10.1114/1.1326031, 2000, https://doi.org/10.1114/1.1326031. |
[Ref13] | L. Formaggia, A. Quarteroni and A. Veneziani. Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, MS&A, Springer, 2009. |
[Ref14] | J. Alastruey, S. M. Moore, K. H. Parker, T. David, J. Peiro and S. J. Sherwin. Reduced Modelling of Blood Flow in the Cerebral Circulation: Coupling 1-D, 0-D and Cerebral Auto-Regulation Models, International Journal for Numerical Methods in Fluids, 56(8), pp. 1061-1067, doi: 10.1002/fld.1606, 2008, http://dx.doi.org/10.1002/fld.1606. |
[Ref15] | A. Zambanini, S. L. Cunningham, K. H. Parker, A. W. Khir, S. A. M. Thom and A. D. Hughes. Wave-Energy Patterns in Carotid, Brachial, and Radial Arteries: a Noninvasive Approach Using Wave-Intensity Analysis, American Journal of Physiology - Heart and Circulatory Physiology, 289(1), pp. H270-H276, doi: 10.1152/ajpheart.00636.2003, 2005. |