Bibliography

  1. P. Y. Lagree. An Inverse Technique to Deduce the Elasticity of a Large Artery, European Physical Journal Applied Physics, 9(2), pp. 153-163, 2000, https://doi.org/10.1051/epjap:2000213.
  2. W. Nichols, M. O'Rourke and C. Vlachopoulos. McDonald's Blood Flow in Arteries, Sixth Edition: Theoretical, Experimental and Clinical Principles, 6 edition, **, CRC Press, 2011.
  3. L. Formaggia, D. Lamponi and A. Quarteroni. One-Dimensional Models for Blood Flow in Arteries, Journal of Engineering Mathematics, 47(3), pp. 251-276, doi: 10.1023/B:ENGI.0000007980.01347.29, 2003, https://doi.org/10.1023/B:ENGI.0000007980.01347.29.
  4. A. S. Olufsen. Modeling the Arterial System With Reference to an Anesthesia Simulator, Ph.D. Thesis, Roskilde Universitet, 1998.
  5. N. Stergiopulos, D. Young and T. Rogge. Computer Simulation of Arterial Flow With Applications to Arterial and Aortic Stenoses, Journal of Biomechanics, 25(12), pp. 1477-1488, doi: https://doi.org/10.1016/0021-9290(92)90060-E, 1992, http://www.sciencedirect.com/science/article/pii/002192909290060E.
  6. J. Alastruey, K. Parker and S. Sherwin. Arterial Pulse Wave Haemodynamics, in BHR Group - 11th International Conferences on Pressure Surges, pp. pp. 401-442, 2012.
  7. S. Sherwin, V. Franke, J. Peiro and K. Parker. One-Dimensional Modelling of a Vascular Network in Space-Time Variables, Journal of Engineering Mathematics, 47(3), pp. 217-250, doi: 10.1023/B:ENGI.0000007979.32871.e2, 2003, https://doi.org/10.1023/B:ENGI.0000007979.32871.e2.
  8. P. Nithiarasu. Biofluid Dynamics, in Swansea University notes, pp. pp. 401-442, 2012.
  9. E. Boileau, P. Nithiarasu, P. J. Blanco, L. O. Muller, F. E. Fossan, L. R. Hellevik, W. P. Donders, W. Huberts, M. Willemet and J. Alastruey. A Benchmark Study of Numerical Schemes for One-Dimensional Arterial Blood Flow Modelling, International Journal for Numerical Methods in Biomedical Engineering, 31(10), pp. n/a-n/a, doi: 10.1002/cnm.2732, 2015, http://dx.doi.org/10.1002/cnm.2732.
  10. X. Wang, J.-M. Fullana and P.-Y. Lagree. Verification and Comparison of Four Numerical Schemes for a 1D Viscoelastic Blood Flow Model, Computer Methods in Biomechanics and Biomedical Engineering, 18(15), pp. 1704-1725, doi: 10.1080/10255842.2014.948428, 2015, PMID: 25145651.
  11. O. San and A. E. Staples. An Improved Model for Reduced-Order Physiological Fluid Flows, Journal of Mechanics in Medicine and Biology, 12(03), pp. 1250052, doi: 10.1142/S0219519411004666, 2012.
  12. M. S. Olufsen, C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim and J. Larsen. Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions, Annals of Biomedical Engineering, 28(11), pp. 1281-1299, doi: 10.1114/1.1326031, 2000, https://doi.org/10.1114/1.1326031.
  13. L. Formaggia, A. Quarteroni and A. Veneziani. Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, MS&A, Springer, 2009.
  14. J. Alastruey, S. M. Moore, K. H. Parker, T. David, J. Peiro and S. J. Sherwin. Reduced Modelling of Blood Flow in the Cerebral Circulation: Coupling 1-D, 0-D and Cerebral Auto-Regulation Models, International Journal for Numerical Methods in Fluids, 56(8), pp. 1061-1067, doi: 10.1002/fld.1606, 2008, http://dx.doi.org/10.1002/fld.1606.
  15. A. Zambanini, S. L. Cunningham, K. H. Parker, A. W. Khir, S. A. M. Thom and A. D. Hughes. Wave-Energy Patterns in Carotid, Brachial, and Radial Arteries: a Noninvasive Approach Using Wave-Intensity Analysis, American Journal of Physiology - Heart and Circulatory Physiology, 289(1), pp. H270-H276, doi: 10.1152/ajpheart.00636.2003, 2005.