Bibliography
- P. Y. Lagree.
An Inverse Technique to Deduce the Elasticity of a Large Artery,
European Physical Journal Applied Physics,
9(2),
pp. 153-163,
2000,
https://doi.org/10.1051/epjap:2000213.
- W. Nichols, M. O'Rourke and C. Vlachopoulos.
McDonald's Blood Flow in Arteries, Sixth Edition: Theoretical, Experimental and Clinical Principles,
6 edition,
**,
CRC Press,
2011.
- L. Formaggia, D. Lamponi and A. Quarteroni.
One-Dimensional Models for Blood Flow in Arteries,
Journal of Engineering Mathematics,
47(3),
pp. 251-276,
doi: 10.1023/B:ENGI.0000007980.01347.29,
2003,
https://doi.org/10.1023/B:ENGI.0000007980.01347.29.
- A. S. Olufsen.
Modeling the Arterial System With Reference to an Anesthesia Simulator,
Ph.D. Thesis,
Roskilde Universitet,
1998.
- N. Stergiopulos, D. Young and T. Rogge.
Computer Simulation of Arterial Flow With Applications to Arterial and Aortic Stenoses,
Journal of Biomechanics,
25(12),
pp. 1477-1488,
doi: https://doi.org/10.1016/0021-9290(92)90060-E,
1992,
http://www.sciencedirect.com/science/article/pii/002192909290060E.
- J. Alastruey, K. Parker and S. Sherwin.
Arterial Pulse Wave Haemodynamics,
in BHR Group - 11th International Conferences on Pressure Surges,
pp. pp. 401-442,
2012.
- S. Sherwin, V. Franke, J. Peiro and K. Parker.
One-Dimensional Modelling of a Vascular Network in Space-Time Variables,
Journal of Engineering Mathematics,
47(3),
pp. 217-250,
doi: 10.1023/B:ENGI.0000007979.32871.e2,
2003,
https://doi.org/10.1023/B:ENGI.0000007979.32871.e2.
- P. Nithiarasu.
Biofluid Dynamics,
in Swansea University notes,
pp. pp. 401-442,
2012.
- E. Boileau, P. Nithiarasu, P. J. Blanco, L. O. Muller, F. E. Fossan, L. R. Hellevik, W. P. Donders, W. Huberts, M. Willemet and J. Alastruey.
A Benchmark Study of Numerical Schemes for One-Dimensional Arterial Blood Flow Modelling,
International Journal for Numerical Methods in Biomedical Engineering,
31(10),
pp. n/a-n/a,
doi: 10.1002/cnm.2732,
2015,
http://dx.doi.org/10.1002/cnm.2732.
- X. Wang, J.-M. Fullana and P.-Y. Lagree.
Verification and Comparison of Four Numerical Schemes for a 1D Viscoelastic Blood Flow Model,
Computer Methods in Biomechanics and Biomedical Engineering,
18(15),
pp. 1704-1725,
doi: 10.1080/10255842.2014.948428,
2015,
PMID: 25145651.
- O. San and A. E. Staples.
An Improved Model for Reduced-Order Physiological Fluid Flows,
Journal of Mechanics in Medicine and Biology,
12(03),
pp. 1250052,
doi: 10.1142/S0219519411004666,
2012.
- M. S. Olufsen, C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim and J. Larsen.
Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions,
Annals of Biomedical Engineering,
28(11),
pp. 1281-1299,
doi: 10.1114/1.1326031,
2000,
https://doi.org/10.1114/1.1326031.
- L. Formaggia, A. Quarteroni and A. Veneziani.
Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System,
MS&A,
Springer,
2009.
- J. Alastruey, S. M. Moore, K. H. Parker, T. David, J. Peiro and S. J. Sherwin.
Reduced Modelling of Blood Flow in the Cerebral Circulation: Coupling 1-D, 0-D and Cerebral Auto-Regulation Models,
International Journal for Numerical Methods in Fluids,
56(8),
pp. 1061-1067,
doi: 10.1002/fld.1606,
2008,
http://dx.doi.org/10.1002/fld.1606.
- A. Zambanini, S. L. Cunningham, K. H. Parker, A. W. Khir, S. A. M. Thom and A. D. Hughes.
Wave-Energy Patterns in Carotid, Brachial, and Radial Arteries: a Noninvasive Approach Using Wave-Intensity Analysis,
American Journal of Physiology - Heart and Circulatory Physiology,
289(1),
pp. H270-H276,
doi: 10.1152/ajpheart.00636.2003,
2005.